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A B S T R A C T   

The Northeast United States is a temperate region that has historically experienced even rainfall distribution 
across the agricultural growing season. Due to climate change, seasonal precipitation and temperature dynamics 
are shifting, causing many farmers to rethink their approach to irrigation. Soil-water sensing technology, 
including tensiometers and granular matrix sensors, are often used by farmers to increase water use efficiency. 
However, adoption of these technologies is low in the Northeast. We conducted a field study to assess the po
tential of soil-water sensing hardware and software to improve crop outcomes in temperate agricultural regions 
such as the Northeast, and a survey to better understand farmer preferences for using soil moisture sensors and 
associated data. The survey involved two vegetable farmer industry associations, and focus groups at four 
agricultural conferences. We found a diversity of preferences among farmers when it comes to when and how 
they would like to access soil-water data. The cost of cloud-based data collection and storage is a barrier for some 
farmers, and they question the economic benefits of investing in these platforms. Additionally, we conducted 
field experiments in two locations across two growing seasons to investigate how using three irrigation strategies 
(feeling the soil, granular matrix sensors, and timers) affect soil-water conditions, leaching, and crop yield and 
quality. We found no significant effects of irrigation strategy on yield, though our results suggest other advan
tages in using soil moisture sensors. For example, the use of sensors increased the proportion of days during the 
growing season in which soil-water was in the optimal field capacity category. Therefore, using these sensors will 
reduce potential environmental risk associated with N contamination of groundwater.   

1. Introduction 

The northeast (NE) region of the U.S. has seen an 84 % increase in the 
number of farms in all sectors since 1992, with the farms tending to be 
small (38 ha average compared to 95 ha nationally) and highly diver
sified (Aguilar et al., 2015; USDA-NASS, 2012). In 2012, there were 26, 
491 vegetable farms in the NE region totaling 163,000 ha, and reporting 

over 1B USD in annual sales (USDA-NASS, 2012). Efficient water use is 
an important component of sustainable vegetable production for several 
reasons. Applying the correct amount of water helps to maximize crop 
yield and quality, as well as reducing the risk of the leaching crop nu
trients away from the root zone, which costs farmers money and can lead 
to high sediment loads which impair public waterways through eutro
phication (Brooks et al., 2016; Imtiyaz et al., 2000) and groundwater 
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contamination. Additionally, some growers find that water use effi
ciency is necessary if water resources are limited or if they purchase 
municipal water. 

The NE region has long been considered to have abundant water 
resources. For vegetable producers, this has meant that access to water 
through rainfall, ground water, or surface reservoirs was generally suf
ficient for crop production. In recent years, however, the changing 
climate has challenged producers in two ways. First, heavy rain events, 
defined as the heaviest 1 % of daily rain events over an annual period 
(Melillo et al., 2014), have increased by 71 % in the NE region between 
1958 and 2012 (Kunkel et al., 2013). In the NE region, this translates to 
rain events with more than 5–10 cm per day (Horton et al., 2011). This 
increase in heavy rain events is greater than in other regions in the 
United States (Walsh et al., 2014). Heavy rain events can lead to satu
rated soils, which can result in root anoxia and spread of root and foliar 
diseases (Volynchikova and Kim, 2022). Saturated soils can additionally 
lead to denitrification and potential emissions of nitrous oxide from 
anaerobic soils. Second, episodic drought is increasing in frequency and 
severity across the region, driven by higher temperatures, longer 
growing seasons, and longer dry periods between rainfalls (Sweet et al., 
2017). Drought is not only a natural phenomenon, but an interaction 
between environmental conditions and demand placed on water re
sources by human activities (Wilhite and Buchanan-Smith, 2005). 
Excessive heat, which can exacerbate heat conditions, has been indi
cated as an overlooked stressor of plant water needs (Battisti and Naylor, 
2009); crops require more water when ambient temperatures are high 
due to increased transpiration and potential heat stress. 

Compared to vegetable growers in western states such as Arizona and 
California, NE vegetable growers apply much less irrigation water to 
crops, however it is likely that even NE growers will need to increase the 
amount of water they apply to crops in coming years as agricultural 
droughts increase in frequency and severity. There is evidence that this 
is already happening: for example, in 2016 vegetable producers in 
western New York experienced yield loss due to drought. Vegetable and 
fruit producers who irrigated their crops experienced losses of 19 % and 
11 %, respectively, while those who did not irrigate reported 40 % and 
47 % loss, respectively (Sweet et al., 2017). Similar losses occurred in 
Massachusetts, where 29,000 acres were affected by drought in the same 
year, leading to a request for a disaster declaration from the USDA 
(Campbell Nelson et al., 2017). 

The shifting precipitation patterns present significant challenges to 
NE vegetable growers to ensure that crops receive sufficient water for 
production purposes, but not so much water as to lead to root anoxia and 
nutrient depletion. However, farmers are generally not knowledgeable 
about the degree to which their management practices are “water effi
cient” because they do not know their crop water needs, actual amounts 
of water applied, or the effect of water application on yield (Levidow 
et al., 2014). To achieve sustainable vegetable production systems, 
including resource conservation and farm profitability, it has been 
proposed that growers will need to move away from traditional methods 
of irrigation scheduling (i.e. observation of plant condition and/or feel 
of soil) and employ scheduling based on real-time soil moisture mea
surements. Increased use of localized soil monitoring can inform man
agement decisions, consider local heterogeneity in a management unit, 
and provide information on the relationships between soil condition and 
plant growth (Viscarra Rossel and Bouma, 2016). Indeed, the develop
ment and widespread use of soil moisture sensing has been identified as 
an important priority in the ongoing work to further advance food and 
agricultural research (National Academies of Sciences Engineering and 
Medicine, 2018). 

While there are a wide range of soil moisture sensing technologies 
available to help farmers achieve positive outcomes, tensiometers and 
granular matrix resistance sensors are particularly useful for farmer use 
due to their relative low cost and level of reliability (Heng, 2008). Ad
vances in soil moisture sensing software and technology in recent years, 
accompanied by the introduction of new lower costs options, presents an 

opportunity to expand use of remote sensing systems to vegetable sys
tems in the NE region of the U.S. 

Although investing in these systems makes ecological and environ
mental sense, farmers are also concerned about the economic implica
tions of these investments (Knox et al., 2012). It has been shown that, 
even in temperate climates like the NE region, precision irrigation has a 
positive economic benefit because of the way in which it supports yield, 
crop condition, and revenue during periods of periodic drought where 
water access may be constrained (Rey et al., 2016). A case study by the 
University of Vermont and the USDA Northeast Climate Hub (Knight and 
Hodgson, 2017) shows that even in years with plentiful rainfall, irriga
tion can have positive financial impacts on net returns. However, many 
growers in the NE may still be skeptical of the economic benefits of 
irrigation in general, and precision irrigation more specifically. Despite 
the benefits of soil moisture sensing technology in increasing water use 
efficiency and decreasing nutrient applications (National Academies of 
Sciences Engineering and Medicine, 2018), widespread adoption is not 
evident in the NE vegetable sector. Many NE vegetable growers irrigate 
as part of their management system, however in 2013, only 215 farms 
(out of 4098) in the New England Water Resource Region reported using 
soil moisture sensors (Schattman et al., 2018; USDA-NASS, 2014). 

Our study has two objectives that will contribute to enhanced use 
and usability of precision irrigation in NE vegetable systems through an 
integrated field and social science investigation. First, a grower survey 
was used to get a better understanding of the current barriers that keep 
NE producers from investing in soil moisture sensing technology for 
irrigation management and determine what they need from the tech
nology to enable them to use it effectively. We then conducted focus 
groups with commercial growers at four conferences where we intro
duced soil moisture sensor hardware and software, and collected farmer 
perspectives on the opportunities and challenges associated with these 
technologies. Second, a multi-year field study located in Maine and 
Vermont, U.S. was conducted to test the effects of three different irri
gation decision approaches on soil moisture level, crop yield and qual
ity, and subsurface N loss. The irrigation decision treatments were based 
on: 1) feel of the soil; 2) soil tensiometer readings; 3) daily timed irri
gation, and 4) a control treatment that received no irrigation. 

2. Material and methods 

2.1. Grower survey and analysis 

In 2017, we developed a survey instrument designed to assess 
whether farmers in the NE irrigated, approximately the proportion of 
their production areas that they irrigated, and how they decided when to 
apply water (and when to stop). Several of the survey questions were 
adapted from those used by the U.S. Department of Agriculture’s Eco
nomic Research Service (ERS), which conducts a national-scale irriga
tion survey approximately every five years. Five Extension personnel 
and one farmer tested the survey prior to deployment. IRB Exemption 
was secured through the University of Vermont (CHRBSS: 18-0199). 

The survey was executed in UVM Lime, an online platform that al
lows for branching logic. The target participants were subscribers to the 
Vermont Vegetable and Berry Growers Association (VVGBA) listserv 
(608 subscribers in 2017, including an estimated 523 farmers) and 
subscribers to UMass VegNotes Newsletter (2786 subscribers, including 
an estimated 1906 farmers). The combined estimated number of farmers 
on both lists was 2167 individuals. Though we targeted farmers in 
Vermont and Massachusetts, some subscribers to the VVGBA listserv and 
the VegNotes Newsletter come from other NE states. We addressed po
tential overlap in subscribers to both lists by creating survey settings that 
placed cookies once respondents took the survey, disallowing duplicate 
submissions. 

The survey was deployed three times between November 8, 2017 and 
January 11, 2018. These surveys were executed without incentives. In 
addition, we conducted an intercept survey with the same on-line survey 
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instrument at the annual VVGBA members meeting in January, 2018. 
Participants in the intercept survey were incentivized with a free water 
test (value 8 USD). The survey was closed on February 6, 2018. We 
collected responses from 155 individuals (26 partial responses, 121 full 
responses). Using the AAPOR response rate approach 4, which accounts 
for both partial and full responses (AAPOR, 2016), we calculated that 
the response rate for VVGBA members was 10 %, the response rate for 
VegNotes subscribers was 1 %, and the combined response rate was 5 %. 
Because of low response rates, the results that we report from this survey 
should be interpreted with caution; they are indicative of survey re
spondents only, and should not be generalized to the greater population 
of vegetable producers in the NE. We present them in this manuscript to 
show our integrative approach to social and natural science. To do so, 
we derive methods and approaches from several disciplines. 
Low-inference descriptions such as verbatim quotes from participants 
helps to establish validity (Johnson, 1997), and we therefore include 
unedited responses to open-ended survey questions in our results. 
Analysis was conducted using IBM SPSS Statistics 24 (IBM, 2017). 

Focus groups were conducted with growers at four regional confer
ences in 2019–2020 (prior to the COVID-19 pandemic). The conferences 
attended were the Pennsylvania Association for Sustainable Agriculture 
(PASA) annual conference, the Vermont Vegetable and Berry Growers 
Association (VVGBA) annual meeting, the bi-annual New England 
Vegetable and Fruit Conference, and the Maine Organic Farmers and 
Gardeners Association (MOFGA) Farmer to Farmer Conference. At all 
sessions, growers were offered monetary stipends and lunch for 
attending the special session. Focus group sessions were preceded by an 
educational presentation, followed by an open discussion about grower 
thoughts on using soil moisture sensors in their irrigation management 
systems. Attendees were asked to fill out pre- and post-workshop ques
tionnaires to assess the effects of the event on their perceptions and 
willingness to invest in soil moisture monitoring systems. Outreach was 
conducted through conference organizers. Between the four focus 
groups there were 22 participants. 

2.2. Field site locations and plot installation 

This research was conducted at Rogers Farm, University of Maine, 
Old Town, ME (44.93◦ N, 68.70 W, 42 m) in 2021 and 2022 and the 
Horticultural Research and Education Center, University of Vermont, S. 
Burlington, VT (44.43◦ N, 73.21◦ W, 67 m) in 2019 and 2021. The soil at 
the Maine site was a Pushaw silt loam (fine-silty, mixed, semiactive, 
nonacid, frigid Aeric Epiaquept), and at the Vermont site it was an 
Adams Windsor loamy sand (Adams: sandy, isotic, frigid Typic Hap
lorthods; Windsor: mixed, mesic Typic Udipsamment) (USDA-NRCS, 
2016). Selected soil physical and chemical parameters are shown in  
Table 1. 

At both sites zero-tension lysimeters based on the Zotarelli et al. 
(2007) design were installed in a trench 60 cm deep to allow leachate 
sampling below the mature crop rooting zones. After installation the 
trenches were back filled with the excavated soil. Collected leachate was 
extracted through a sampling tube extending above the soil surface 
using a portable vacuum pump. Watermark model 200SS sensors (Irr
ometer Co., Riverside, CA) were installed at 30 cm and 60 cm depths on 

all twelve plots at both sites. The Maine site used a cellular-based 
IRROcloud IC-10, and the Vermont site used a WiFi-based IRROmesh 
(Irrometer Co., Riverside, CA) system for hourly data logging and 
archiving. Irrometer 200TS Watermark temperature sensors (Irrometer 
Co., Riverside, CA) were also installed in the plots for temperature 
self-compensation of the soil moisture sensor readings. Twelve raised 
bed plots were hand-built at both sites to incorporate the randomized 
block design of three treatments with three replicates. The plots were 
8.64 m2 at the Maine site with 0.6 m buffer borders on all sides and 4.46 
m2 in Vermont with 0.9 m buffer borders on all sides. 

2.3. Irrigation system design and scheduling approaches 

The irrigation source at both sites provided 103 kPa of water pres
sure to the system. The mainline was split into three header pipes for the 
separate irrigation treatments, each fitted with a timer and a flow meter. 
Within each irrigated plot, six lines of drip tape with 28 cm emitter 
spacing were installed. Water applications to the irrigated treatment 
plots were recorded weekly from the three flow meters installed in the 
treatment header pipes. Ambient precipitation was estimated using 
NOAA weather station data located at the Bangor International Airport 
(16.5 km from the Maine study site) and the Burlington International 
Airport (6.1 km from the Vermont study site). Daily evapotranspiration 
at both sites was modeled using the Climate Smart Farming Water 
Deficit Calculator (DeGaetano and Belcher, 2022). 

Three irrigation scheduling methods plus a non-irrigated control 
treatment were investigated. All three treatments were developed based 
on preliminary survey data collected by our team (Schattman et al., 
2018), specifically questions that investigated how farmers in the NE 
United States decided when to turn irrigation water on, and when to turn 
it off. Treatment 1 (i.e., ‘Bradshaw Toe Drag’) was based on the feel of 
the soil, assessed daily, to initiate irrigation when the soil was ‘dry’ 
(USDA-NRCS, 1998). Feeling the soil to make irrigation decisions is a 
common, traditional method used by growers in the NE (Schattman 
et al., 2018) and nationally (Hrozencik and Aillery, 2021). Treatment 2 
irrigation was initiated when the soil tensiometer at 30 cm soil depth 
reached 20 kPa of water tension. The specific threshold was based on a 
rough estimation that would likely meet the needs of all three crops in 
our experiment, according to guidance published by the Irrometer 
Company (Riverside, CA). Treatment 3 was timer-based to apply irri
gation daily. Many greenhouse growers use timers as a low-cost irriga
tion automation approach, especially in greenhouses. Treatment 4 was 
the control plot that did not receive irrigation. Irrigation volumes were 
all converted to depth units (i.e., cm) for the presentation of results. All 
treatments received ambient precipitation. 

2.4. Vegetable crop planting and harvest 

Fertility amendments were based on standard soil test results ob
tained with the Modified Morgan’s (ammonium acetate, pH 4.8) 
extractant which is widely used in the NE U.S. (Wolf and Beegle, 1995). 
The soil test results for the macro- and micro-nutrients at both sites were 
in the medium to optimum range, with the exception of the P test value 
in Vermont which was in the high or excessive range. In Maine, 33 g m-2 

of 10-10-10 fertilizer and 2440 g m-2 of lime was added at the start of the 
study in 2021 and no fertilizer was applied in 2022. In Vermont, 163 g 
m-2 of 8-2-2 dehydrated poultry manure and 33 g m-2 of K2SO4 was 
applied in 2019. In 2021, 244 g m-1 of 7-2-6 fertilizer was applied. Four 
seedlings each of ‘Olympus F1’ bell peppers (Capsicum annuum), ‘Mar
ketmore’ cucumbers (Cucumis sativus), and ‘Early Girl’ tomatoes (Sola
num lycopersicum) were planted in each plot using black plastic mulch at 
both sites. The seedlings were transplanted on June 3, 2021 and June 20, 
2022 in Maine and May 29, 2019 and May 25, 2021 in Vermont. After 
reaching marketable stage, the crops were harvested twice each week 
and the count and weight recorded for each crop. The crops were also 
assessed for quality using a standard 1–5 grading scale for color 

Table 1 
Selected chemical and physical properties for Maine and Vermont soils in this 
study.  

Soil parameter Maine Vermont 

pH 5.7 6.6 
Organic matter (%) 4.9 2.6 
Sand (%) 17.6 88.9 
Silt (%) 81.9a 6.4 
Clay (%) 4.7 
Soil texture class Silt loam Loamy sand  

a Lab assessment combined silt and clay for Maine soils. 
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uniformity, shape uniformity, gloss, firmness, and the presence/absence 
of defects (Mitcham et al., 1996). The final harvests were on October 10, 
2021 and September 29, 2022 in Maine and were on October 7, 2019 
and October 18, 2021 in Vermont. 

In this study, we simulated a diversified cropping system by planting 
three crops in close proximity: tomato (Solanum lycopersicum), bell 
pepper (Capsicum annuum), and cucumber (Cucumis sativus). Through 
doing so, we sought to simulate the irrigation decision making of 
farmers in the Northeast United States. According to the United States 
Department of Agriculture, in 2012 the Northeast was home to 18,649 
vegetable and 11,870 fruit operations, which together generated 2.3 
billion USD in gross sales (USDA-NASS, 2014). Many of these farms are 
highly diversified; in fact this region has the highest degree of agricul
tural diversity of any in the country (Aguilar et al., 2015). Farmers often 
make irrigation decisions in “blocks’’ that encompass more than one 
type of crop or crop family. Crops are often rotated to break pest, weed, 
and disease cycles, and to allow for fallow periods or green manure 
production. 

In addition, all three of the crops included in our study are grown in a 
variety of different ways in the Northeast. For example, tomatoes can be 
grown in the field or in greenhouses. Some tomato growers use grafted 
plants, with the desired cultivar top worked onto a highly productive 
and/or disease resistant rootstock (Benton Jones, 2007). All three crops 
are often (but not always) grown using black plastic mulch as a weed 
barrier. Some farmers in the region irrigate these crops, but many do 
not. 

2.5. Soil N extraction and lysimeter solution analyses 

To investigate the effect of irrigation treatments on available N dy
namics, weekly soil cores between 15 and 30 cm depth were taken. The 
soils were extracted with 1 M KCl and analyzed using a flow-through 
analyzer with a Cd-reduction column to convert the nitrate to ammo
nium form. To monitor N loss from the crop rooting zone, the 60-cm soil 
depth lysimeter samples were collected weekly, volume recorded, and 
analyzed for nitrate content as above. 

2.6. Statistical analysis 

All statistical analysis was conducted using JMP© v. 16.0.0 (SAS 
Institute, Cary, NC). Each site-year was analyzed separately due to 
different soil and environmental conditions using ANOVA with the four 
treatments as the independent variable. Each of the dependent variable 
datasets was fit to the normal distribution in the quantile plot and the 
Shapiro-Wilk and Anderson-Darling goodness of fit test was used to 
evaluate whether the normal distribution assumption was valid by using 
a P < 0.05 threshold to indicate a poor normal fit. Non-normal data was 
transformed to approximate normal distribution with the Box-Cox 
transformation using optimized λ power parameter calculated by the 
boxcox function in MATLAB Release R2022b (Mathworks, Natick, MA) 
prior to ANOVA testing. Tukey’s HSD range test was used for means 
comparison when the ANOVA P-value was < 0.05. Trends in weekly 
data were fit using locally-weighted regression and smoothing scatter
plots analysis as implemented by JMP© using quadratic local fitting (λ), 
tri-cubic weighting function, and a smoothness (α) value of 0.7. 

3. Results and discussion 

3.1. Farmer survey and focus groups 

The majority of the 155 survey respondents reported growing veg
etables (80 % of respondents), berries (50 %), cover crops (50 %), or
namentals (16 %), tree fruit (9 %), and livestock feed (9 %). Seventy-six 
percent of respondents reported producing products in two or more of 
the categories listed. Seventy-six percent of respondents were farm 
owners, while 39 % were farm managers and 6 % were farm staff. On 

average, respondents had 19 years of experience working on their cur
rent farm, with a standard deviation of 15 years. The majority of re
spondents were from Vermont (60 %) and Massachusetts (24 %). 

Respondents reported acreage in production (mean = 26 acres, 
median = 8 acres) and square feet in high tunnel production (mean =
7287 sq. ft., median = 2940 sq. ft.). We asked respondents to report the 
number of acres irrigated in 2017 (mean = 15 acres, median = 4 acres). 
The majority of respondents (90 %) reported irrigating either field acres 
or high tunnels/greenhouses in 2017. The majority of respondents who 
reported irrigating (94 %), reported using drip/trickle irrigation. In 
addition, 59 % reported using non-mobile overhead irrigation systems, 
and 28% reported using traveling overhead systems. 

When asked how they decided when to irrigate, respondents were 
invited to select as many options as applied to them. The majority of 
farmers who responded to this question reported that they used crop 
condition (89 % of respondents) and/or the feel of the soil (83 %) as 
their cue to irrigate. This aligns with results from the most recent USDA 
Irrigation Survey (USDA-NASS, 2019) which reports that 78 % of U.S. 
growers who report irrigating use crop condition as their cue to irrigate, 
though a small proportion (only 40 %) of U.S. growers use the feel of the 
soil. Most respondents to our survey (93 %) reported that they did not 
measure the quantity of water used for irrigation in 2017. It should be 
noted that irrigation practices are influenced by the regulatory envi
ronment in which farmers operate, which may or may not limit the 
amount of ground or surface water farmers can use for irrigation, as well 
as reporting requirements (Schattman et al., 2021). 

Farmers who attended the focus groups had a range of prior expe
riences with soil moisture sensors, from a general familiarity to no prior 
experience. When asked how they decided to initiate and stop irrigation, 
most (n = 9, or 69.23 % of the 13 participants who answered the pre- 
and post-workshop/focus group questionnaire) reported that they irri
gated based on crop condition and the feel of the soil. This aligns with 
the survey results noted above. Most respondents (9 out of 13) had never 
used soil moisture sensors. Three participants had used soil moisture 
sensors in the past but had discontinued use because the sensors were 
"too complicated", "were defunct", or there was too much of a cost with 
"reinvesting on a new farm". 

Two common themes that farmers discussed related to soil moisture 
sensors were: (a) preferences for various data delivery systems (in the 
field vs. in the cloud), and (b) frequency with which they wanted to view 
soil water tension data. Additionally, the pre- and post-focus group 
questionnaire revealed how farmers assessed their irrigation needs in a 
typical year, and whether their knowledge of soil moisture monitoring 
changed over the course of the workshop/focus group. Lastly, we asked 
how much they would be willing to invest in a soil moisture monitoring 
system, assuming different potential yield increases. 

Through the focus group discussions, it became clear that farmers 
have different preferences for how to access data. Soil moisture data 
delivery systems include integrated tension gauges, handheld meters 
that provide point-in-time readings in the field, and dataloggers that 
record continuous data. Data loggers can be connected to cellular or 
wireless networks, allowing farmers to access data from a smart phone 
or computer. As one grower stated: "I don’t hate the idea of a reader on 
the (sensor), because I’d have to run back to the house to get on the 
computer and login, because I couldn’t do it through a phone. So, (a 
reader in the field would be) a quicker decision-making tool." Others 
indicated a preference for getting the information online. However, 
there is significant ongoing expense associated with cloud-based data, 
which some farmers indicated would be a barrier to them. One farmer 
noted: "I’m okay with the prices (for the sensors) as they are. It’s just 
that, if it were easier to get the data. it depends on if you’re going to get 
the software or not, honestly. That’s the expensive part." Another stated: 
"I think the big question is: When does this pay? What carrot yield bump 
would justify this expense? You’re getting fine carrots irrigation by feel 
(ing the soil) but would you get a $1000 more of your carrot crop by 
using this technology?" These quotes illustrate the certainty equivalent 
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(CE), a concept first introduced by Keeney and Raiffa (1976), which has 
been defined as the “amount of economic return that would have to be 
guaranteed in order for an individual to be indifferent towards a higher 
but less certain return” (Kelly et al., 2021, p. 3). 

Focus group participants also discussed how frequently they wanted 
to use soil moisture data to inform irrigation decisions. Many indicated 
that they only wanted to check soil moisture sensors when they were 
able to irrigate. For some, this was once a week while for others it was 
every two or three days. Others indicated that their willingness to check 
sensors would be driven by weather. For high tunnel production, one 
farmer who grew tomatoes reported that checking soil moisture levels 
was a daily ritual, but that was not necessarily true for sensors that she 
installed in outdoor crops. Others indicated that having data that was 
collected on a shorter time step would be very useful to them as they 
tried to develop more sophisticated irrigation strategies. For example, 
one farmer stated: 

"I’m always curious about. water layering. turn it on for a little bit of 
time in the morning, and then once that’s sunk down, then turn it on 
again. in order to get the moisture lower. I’ve always been curious 
about what’s happening if I just water for ten minutes or what’s 
happening if I water for an hour." 

These growers demonstrated an interest in better understanding the 
soil-water dynamics in their production areas, but were diverse in their 
preferences for how to access soil moisture data and how often they 
wished to access it. 

Farmer participants were asked to report their level of agreement 
with several statements associated with on-farm water management 
before the workshop/focus group, and again after the session was 
complete. Participants reported that the workshop portion of the session 
increased their familiarity with soil moisture hardware and software, 
increased the likelihood that they perceived soil moisture sensor infor
mation as relevant to their farm operations, and increased their will
ingness to invest in soil moisture technology (Table 2). As a result of 
participating in the workshops and focus groups, farmers reported that 
their knowledge about soil moisture sensors had increased (4.5 average 
level of agreement, with 5 = strong agreement and 1 = strong 
disagreement). Participants also indicated that they would use soil 
moisture sensors in the future (mean response = 4.5) and that their 
confidence in using soil moisture sensors had increased (mean response 
= 4.0). Though attendees at the workshop were a self-selected group (i. 
e., they were there because they were interested in the topic of soil 
moisture sensing, and therefore may be more disposed to adopt this 

technology than the average farmer), these results show that NE growers 
often do not have as much information as they desire related to this well- 
established approach to irrigation scheduling. 

We asked participants how much they would be willing to invest in 
soil moisture monitoring, if they could achieve 10 %, 20 %, 30 %, or 40 
% increased yield (Fig. 1). Several farmers reported that they would be 
willing to invest less than $500 for only a 10 % increase in yield (8 out of 
13 respondents), but willingness to invest greater sums was contingent 
upon higher rates of yield improvement. For example, 5 respondents 
would consider investing more than $2000 if the return was a 40 % 
increase in yield, but only 2 farmers would consider investing that sum 
for a 30 % increase in yield. Only one respondent indicated that they 
would spend over $2000 for a yield improvement of 20 %, and no one 
was willing to invest this much money for a 10 % yield improvement. 

Though the research literature is rich in assessments of different soil 
moisture assessment technologies, studies concerning farmers’ percep
tions of these technologies are few. Understanding farmers’ preferences 
and questions about this technology is a critical step in making soil 
moisture monitoring a more accessible approach for irrigation sched
uling. However, a recent study conducted with Nebraskan corn pro
ducers found that, while farmers tend to over or underestimate soil- 
water content, precise soil moisture information is not required for 
farmers to make good irrigation decisions. The authors propose that a 
better approach is for agricultural advisors to provide growers with 
recommendations based on crop-water models and optimization tech
niques (Kelly et al., 2021). 

This suggests that investing in on-farm soil moisture sensors and 
online data platforms may not be necessary for farmers to improve their 
bottom lines, however working closely with agricultural advisors who 
have the expertise to make irrigation recommendations on a regular 
basis is a worthwhile activity. It is worth noting that irrigation ap
proaches likely need to be adjusted several times over the course of a 
growing season, in response to weather forecasts (Kelly et al., 2023), 
meaning agricultural advisors who assist growers with irrigation 
scheduling should revisit and revise recommendations several times 
within a single growing season. Building upon the work that Kelly and 
colleagues have completed in Nebraska, the field trial component of our 
study explored whether soil moisture sensing could improve crop out
comes in diversified vegetable production in the Northeast. 

3.2. Local climatic conditions and evapotranspiration 

Irrigation scheduling, in any form, aims to maintain soil moisture 
levels that adequately meet plant water demands. A simplified water 
balance model consists of precipitation (PR) and irrigation (IRR) as in
puts to the soil system and evaporation, plant transpiration (tradition
ally combined into a single term, evapotranspiration (ET)), surface 

Table 2 
Focus group participants level of agreement to statements presented on pre- and 
post-workshop questionnaires. 5 = strongly agree; 1 = strongly disagree.  

Statement Average level 
of agreement  

PRE POST 

My current irrigation system allows me to successfully meet the 
water needs of my crops.  

2.6  2.1 

I am concerned about the effects of precipitation (rainfall and snow) 
on my crops’ ability to access to nutrients.  

3.6  3.7 

Fertilizer efficacy plays a role in my decisions about when to 
irrigate.  

2.7  3.5 

My irrigation system is efficient.  1.8  1.9 
I wish to enhance irrigation efficiency on my farm.  4.4  4.5 
I am familiar with soil moisture sensor hardware (sensors).  2.0  3.6 
I am familiar with soil moisture sensor software (for reading data 

output).  
1.5  2.9 

Soil-moisture sensors provide information that is relevant to 
irrigation-related decisions that I make on my farm.  

2.0  3.3 

Considering what I know about crop water needs, I am willing to 
invest in soil moisture sensing technology.  

3.5  3.8 

I have concerns about managing soil moisture hardware in the field.  3.3  3.2 
I am confident in my ability to interpret data generated by soil 

moisture sensing software.  
3.3  3.5  

Fig. 1. Amount (USD) that focus group farmers would invest in soil moisture 
sensor technology (hardware and software) at different levels of potential 
yield increase. 
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runoff (SR), and deep percolation (DP) as outputs (Hillel, 2004). Thus, 
the net irrigation requirement (NIR), often termed soil water deficit, can 
be calculated as:  

NIR = DP + SR + ET − PR                                                             (1) 

The variables DP and SR are difficult to estimate, and typically the 
sum of DP and SR is much less than ET, so that they can be set to zero and 
Eq. (1) can be simplified to:  

NIR = ET − PR                                                                              (2) 

Conceptually, Eq. (2) shows that irrigation can be scheduled by 
knowing PR, an easily measured parameter, and ET. The ET parameter is 
a function of a set of conditions that include crop type, soil texture, 
temperature, wind, humidity, and solar radiation. Recently, online tools 

have become available to obtain real-time modeled ET values providing 
producers with information to make sound irrigation management de
cisions (DeGaetano and Belcher, 2022). 

Because ET is a function of atmospheric conditions, it is highly var
iable on daily, weekly, and annual time-steps, and therefore irrigation 
requirements are highly dependent on short-term weather history. 
Considerable differences in PR were observed among the four site-years 
(Fig. 2). The total PR was more variable at the Maine field site with 
49.5 cm in 2021 and 29.9 cm in 2022, while the Vermont site received 
34.5 cm in 2019 and 42.1 cm in 2021. Patterns of PR were also different 
with Maine-2021 receiving high PR amounts in the early and late stages 
of the growing season (Fig. 2A). ET was more consistent with average ET 
being 30.8 ± 0.7 cm in Maine and 35.3 ± 4.1 cm for Vermont. For the 
growing season, the NIR was − 19.2 cm for Maine 2021, 1.4 cm for 
Maine 2022, 3.8 for Vermont 2019, and − 9.7 cm for Vermont 2021 

Fig. 2. Modeled evapotranspiration and measured precipitation for the four site-years: A) Maine 2021, B) Maine 2022, C) Vermont 2019, and D) Vermont. 2021. 
When the red fitted line crosses into positive values, this indicates a moisture deficit. 
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where negative values indicate surplus water status. 
NIR trends during the growing season are shown by the fitted 

regression lines and indicate that NIR can be positive within weekly time 
steps despite the total season NIR being negative. There were nine 
weekly sampling periods that in each of the four site-year studies had 
positive NIR indicating a need for irrigation (Fig. 2). There were tem
poral differences in when irrigation was indicated, with Maine 2021 and 
Vermont 2019 needing irrigation early- and mid-season, Maine 2022 
showing consistent irrigation need for the first half of the growing sea
son, and Vermont 2021 showing irrigation need for the early phase of 
the growing season. 

3.3. Irrigation volume and timing 

The irrigation quantity for the three scheduling methods and the 
precipitation data are shown in a cumulative plot for the four site years 
(Fig. 3). The timing of irrigation events between the feel and sensor 
methods were similar as evident by the coinciding step increases in the 

histogram, suggesting that the timing of events within these treatments 
was similar. In years with more precipitation (Maine 2021 and Vermont 
2021), both of the informed scheduling methods (feel and sensor) had 
long periods without irrigation. This conserved water resources, and was 
likely driven by the buildup of soil moisture through rain events. The 
irrigation quantity applied using a daily timer scheduling method was 
much higher than the feel or sensor methods, and likely resulted in 
surplus water being applied to the plots. The total irrigation and pre
cipitation applied by the three scheduling approaches for the four site 
years are shown in Table 3. The feel and sensor treatment means were 
not significantly different using the Tukey’s HSD test, suggesting that 
both approaches led to similar quantities of irrigation. 

3.4. Soil moisture levels during growing season 

The daily soil moisture level averaged between midnight and 5 AM at 
30 and 60 cm depths of each treatment replication are shown for Maine 
2021 and Maine 2022 studies in Fig. 4 and for Vermont 2019 and 

Fig. 3. Cumulative histogram of irrigation applied for the feel, sensor, timer irrigation scheduling methods and ambient precipitation for the four site-years: A) Maine 
2021, B) Maine 2022, C) Vermont 2019, and D) Vermont. 2021. 
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Vermont 2021 in Fig. 5. In the heat maps, the blue color scale reflects 
lower soil matric potential (more moistness) and the red color scale 
reflects higher matric potential (more dryness). There are several trends 

observable from these heat maps. First, with the possible exception of 
the Maine 2021 results, the sensor plots generally had more consistent 
days in the color-scale blue region than the feel plots, suggesting that the 
use of soil moisture sensors for irrigation scheduling results in more 
consistency in the desired range of soil moisture than the traditional feel 
method. 

Second, the individual replications within a treatment were more 
variable for the Maine field site than for the Vermont site, highlighting 
the high degree of spatial heterogeneity of soil physical characteristics 
that affect soil-water-plant relationships. The greater variability for the 
Maine site is likely to be related to its silt loam soil texture, compared to 
loamy sand at the Vermont site. Moreover, the Maine soil has 88 % more 
organic matter than the Vermont soil (Table 1). Loam soils have a wide 
range in pore size, providing many meso- and micro-sized pores to retain 
water (O’Geen). Increasing organic matter content increases soil 

Table 3 
Cumulative quantity of irrigation applied in cm units and precipitation during 
the growing season in the four field site-year studies. The control treatment 
received only ambient precipitation, but no irrigation. Treatment means with 
different letters are significantly different using the Tukey’s HSD test.  

Site - Year Control (cm) Feel of soil (cm) Sensors (cm) Timers (cm) 

Maine - 2021  49.5 135 109 555 
Maine - 2022  29.9 95 204 681 
Vermont - 2019  34.5 174 133 1140 
Vermont - 2021  42.1 141 76.4 1267 
Treatment Mean (p = 0.005) 136 B 131 B 910 A  

Fig. 4. Daily soil moisture sensor readings for the Maine 2021 and 2022 studies. The daily readings are the average of the hourly readings from midnight to 5 AM. 
Row labels refer to the experimental “cues to irrigate” (feel = feel of soil; sensor = Watermark model 200SS sensors; control = no irrigation; timer = automatic timers); 
depth of sensor placement (30 cm or 60 cm); and replication (A–C). 

R.E. Schattman et al.                                                                                                                                                                                                                           



Agricultural Water Management 287 (2023) 108428

9

aggregation, which also increases water retention (Lal, 2020). In 
contrast, sandier soils have large macro-pores that results in rapid 
downward water flow. The more tortuous flow paths of soils with higher 
organic matter contents and finer textures are likely to create localized 
areas of water retention in the Maine soils which may lead to the higher 
degree of variability observed. 

Some observations about the flow of the irrigated water down to the 
60-cm depth can be made from the soil water tension values shown in 
Figs. 4A, B, 5A and B. The Maine 2021 and Vermont 2019 data shows the 
deeper 60-cm soil water tension values mirroring those of the corre
sponding 30-cm sensor values. In contrast, the Maine 2022 results shows 
that soil was very dry, particularly at 60-cm, from late-July to the end of 
the study regardless of treatment. This different pattern may be due to 
the 66 % greater precipitation in 2021 than in 2022 (Table 3). The sum 
of the modeled positive weekly ET values for Maine (Fig. 2) was 7.6 cm 

in 2021 and 15.8 cm in 2022 indicating higher rates of soil water 
transfer from the soil to the atmosphere. These factors likely led to the 
transfer of soil water from the 60-cm soil depth to the shallower 30-cm 
region where it would become available for evapotranspiration. Alter
natively, roots may have extended deeper into the soil profile during the 
drier year, leading to drier soils. 

The 30-cm daily soil moisture tension values binned into four range 
categories: 0–5 kPa, saturation; 5–20 kPa, field capacity; 20–60 kPa, 
moderately dry; and 60 +, stressfully dry (Harrison, 2012) are shown in  
Fig. 6. A higher proportion of the readings were in the optimal field 
capacity category for the sensor plots as compared to the feel plots for all 
four site years. With the exception of the Maine 2021 data, the timer 
treatment led to soils being in the saturated class in more than 84 % of 
days, showing that daily timed irrigation in this study led to 
over-irrigation. Not surprisingly, the non-irrigated control was the most 

Fig. 5. Daily soil moisture sensor readings for Vermont 2019 and 2021 studies. The daily readings are the average of the hourly readings from midnight to 5 AM. 
Row labels refer to the experimental “cues to irrigate” (feel = feel of soil; sensor = Watermark model 200SS sensors; control = no irrigation; timer = automatic timers); 
depth of sensor placement (30 cm or 60 cm); and replication (A–C). Only 30 cm soil depth data was available for the 2021 study. 
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variable with both Maine study years having moderately-dry and 
stressfully-dry as the dominant category. In both years in Vermont, 
optimal field capacity was the dominant category (Fig. 6). The 60-cm 
sensor data was collected in Maine for both years, and in Vermont in 
2019. The 60-cm sensor data for the Vermont 2021 study were not 
collected. The 30- and 60-cm values for Vermont 2019 were qualita
tively similar which is likely due to high sand content (89 %) of the soil 
allowing for rapid transport through the soil. The much drier 60-cm soils 
for Maine 2021 than in Maine 2021 evident in Fig. 4 is supported with 
63–99 % of the days in the stressful category. 

3.5. Leachate volume 

The volume of water collected by the lysimeter at 60-cm depth 
expressed directly in cm units and as a percentage of the sum of pre
cipitation and irrigation inputs is shown in Table 4. The leachate volume 
in Maine was consistently low with values between a trace and 1.1 cm of 
water. There was greater leachate in Vermont, with the range between a 
trace and 14.1 cm of water which reflects the high sand content 
(Table 1) allowing for greater percolation of water through the soil 
profile. Expressed as a percentage of the sum of precipitation and/or 
irrigation inputs, the Maine values were all less than 1 % and Vermont 
values ranged between 0 % and 1.9 %. These low values for both sites 
support the use of the simplified Eq. (2) that ignores the deep percola
tion term because it is often negligible compared to the ET term in 

estimating the required irrigation quantity. 

3.6. Nitrogen transport in deep percolation 

The nitrate anion is both readily available to crops and highly mobile 
and subject to leaching loss. The deep percolation loss of nitrate-N in 
plots was estimated by scaling the area of the lysimeter to the field plot 
area and is shown for the Maine 2021, Vermont 2019 and 2021 studies 
(Table 4). The average NO3

- -N concentration was low in the Maine 2021 
study resulting in the average transport of 3.6 mg of NO3

- -N to the deeper 
soil depths. This loss is insignificant in comparison to the 28.5 g of N 
applied to each treatment plot. The two Vermont years had contrasting 
results with the NO3

- -N concentration of the leachate high in 2019 and 
low in 2021 leading to 3700 and 213 mg of NO3

- -N lost in deep perco
lation, respectively (Table 5). The NO3

- -N concentration of the leachate 
was highly variable with a range between 8 and 34 mg NO3

- -N L-1 in 
2019 compared to a much more consistent and narrower range of 
0.17–0.36 mg NO3

- -N L-1 in 2021. This difference is likely related to the 
use of poultry manure in 2019 which added 58 g of N to each plot and 
synthetic fertilizer in 2021 which added 76 g of N. Surprisingly, the 
NO3

- -N concentration in the leachate was higher in the year that poultry 
manure was used although only 30–60 % of the total N in poultry 
manure is probably mineralized to plant available inorganic-N (Sims, 
1986; Bitzer and Sims, 1988). It is important to note that NO3

- -N in 
leachate is driven not only by fertilizer applications and irrigation, but 

Fig. 6. Proportion of soil moisture level readings at 30 cm depth into four categories: saturated (0–5 kPa), field capacity (5–20 kPa), moderately dry (20–60 kPa), 
and stressfully dry (60 + kPa). 

Table 4 
The number of weeks with lysimeter samples (sample count), total volume of leachate, and the leachate volume as a percentage of sum of precipitation and irrigation 
inputs for the four irrigation treatments at the Maine and Vermont study sites. PR = precipitation; IRR = irrigation.   

Maine – 2021 Maine – 2022 Vermont – 2019 Vermont – 2021 

Treatment Sample 
Count 

Total 
Leachate 
Volume 
(cm) 

% of 
PR + IRR 

Sample 
Count 

Total 
Leachate 
Volume 
(cm) 

% of 
PR + IRR 

Sample 
Count 

Total 
Leachate 
Volume 
(cm) 

% of 
PR + IRR 

Sample 
Count 

Total 
Leachate 
Volume 
(cm) 

% of PR 
+IRR 

Feel of 
soil  

5  0.9  0.5 %  2 0.3 0.2 % 5 1.1 0.5 % 0  0 0 % 

Sensor  5  0.9  0.6 %  1 0.2 0.1 % 1 Trace – 16  2.2 1.9 % 
Timer  5  1.1  0.2 %  2 0.4 0.1 % 17 14.1 1.2 % 16  8.7 0.7 % 
Control  4  0.4  0.8 %  1 Trace – 0 0 0 % 14  4.7 11.2 %  
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also precipitation. 
Mass balance of N was not possible in these studies because the loss 

of nitrate through reduction to gaseous N2O and N2 by the denitrifica
tion process is unknown, and because crop uptake (leaf tissue samples) 
was not measured. Denitrification occurs under anaerobic conditions 
such as water saturated soils with low soil oxygen levels (Weil and 
Brady, 2016). The NO3

- -N content of leachate in the poultry 
manure-amended year (Vermont 2019) had the lowest concentration in 
the timer treatment samples which would be consistent with denitrifi
cation loss because the soil in the treatment was saturated 84 % of days 
in the surface to 30 cm soil depth. Our results suggest that the risks of 
adverse impacts of transport of leachate NO3

- -N down to groundwater is 
low with the use of inorganic fertilizer with average leachate concen
trations less than 0.29 mg NO3

- -N L-1 (Table 4). There may be higher 
risks with the use of manure as a nutrient source with average leachate 
concentrations of 20.4 mg NO3

- -N L-1. 

3.7. Crop available N dynamics 

The availability of NO3
- -N to crops is a key factor in determining 

productive yields. We used the 1 M KCl extractable N tests to monitor 
the trends in extractable NO3

- -N throughout the growing season (Fig. 7). 
The data was normalized to the initial extractable concentration at the 
time of transplanting the seedlings to highlight the changes during the 
season. The color-coded local kernel smoothing lines shows the treat
ment averages from three field studies (Maine 2021, Vermont 2019, 
Vermont 2021). Note that in 2022 in Maine there was only one NO3

- -N 
value in a lysimeter sample, therefore this site-year has been excluded 
from this part of the analysis. The feel treatment line reached a 

minimum of 0.25 at week 13 and ended at 0.26 at the end of the growing 
season at week 17. The sensor treatment line reached a minimum of 0.39 
at week 12 and increased slightly to 0.43 at week 17. The timer line 
reached a minimum of 0.21 at 12 weeks and rose slightly to 0.29 at week 
17. In contrast to the irrigated treatments where the extractable N was 
less than at the time of transplanting, the control treatment line reached 
a minimum of 0.54 at week 13 and recovered to 1.02 at the end of 
growing season. This recovery was likely driven by organic matter 
decomposition followed by nitrification in a moist environment. It is 
also likely that mineralization was occurring in all plots, but N was 
leached out of irrigated treatments. It is interesting to note that the rank 
ordering of minimum values mirrored the inverse ordering of total 
irrigation quantities (Table 3) suggesting that irrigation treatment was a 
factor in the declining extractable N during the growing season. Thus, 
the fate of the added N is likely to be some combination of crop uptake, 
NO3

- -N leaching loss, and denitrification. 

3.8. Vegetable yield and quality 

The individual total yields for the cucumber, pepper, and tomato 
crops harvested in the four field studies are shown in Fig. 8. There were 
no significant irrigation treatment differences in yield across all 12 crop- 
site-year combinations. The lack of an irrigation effect was surprising 
since the non-irrigated control plots had surface-30 cm soil moisture 
levels that were either moderately-dry or stressfully-dry 24–98 % of the 
days (Fig. 5). Across the four site-year studies, peppers were the most 
consistent in yield production with an average yield of 4.03 kg/m2 and a 
coefficient of variation (average/standard deviation) of 9.6 %, tomatoes 
were intermediate in consistency with a yield of 18.7 kg/m2 kg and a 
coefficient of variation of 28 %, and cucumber yield was highly variable 
with an average of 20.00 kg/m2 and a coefficient of variation of 96 %. 

It should be noted that vegetable crop yields vary based on climate, 
crop variety and genotype, fertilizer applications, and other factors. 
Pepper yields documented in our study were generally comparable to 
those documented in research, which range between 2.1 and 3.5 kg/m2 

(Sezen et al., 2006). Tomato yields in our study were higher than those 
documented in other research, which range between 60.0 and 110.0 
tons/ha (6 and 11 kg/m2) (Warner et al., 2004). However, it is difficult 
to compare the outcomes of a wide range of tomato production ap
proaches including grafted versus ungrafted, field versus greenhouse, 
and many different approaches for trellising (Benton Jones, 2007). 
Lastly, cucumber yields in our study were much higher than yields 

Table 5 
Average N concentration and total N content of lysimeter samples for the four 
treatments at the Maine – 2021, Vermont – 2019, and Vermont - 2021.   

Maine – 2021 Vermont – 2019 Vermont – 2021 

Treatment Average 
N (mg L- 

1) 

Total 
N 
(mg) 

Average 
N (mg L- 

1) 

Total N 
(mg) 

Average 
N (mg L- 

1) 

Total 
N 
(mg) 

Feel of 
soil  

0.04  3.8 19.7 868 - - 

Sensor  0.05  3.8 33.6 12 0.36 100 
Timer  0.06  5.1 8.0 10,220 0.34 431 
Control  0.05  1.5 - - 0.17 109 
Average  0.05  3.6 20.4 3700 0.29 213  

Fig. 7. Weekly 1 M KCl extractable N concentration of the feel, sensor, timer, and control treatment plots over the growing season at the four site years. The data 
points were normalized with respect to N concentration by setting the concentration at the time of transplanting to 1 and time was with respect to date of trans
planting. The LOWESS regression fitting of the treatment response averaged over the four site years are shown. 
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Fig. 8. Total yield of the cucumber, pepper, and tomato crops are shown for Maine 2021 (A–C), Maine 2022 (D–F), Vermont 2019 (G–I), and Vermont 2021 (J–L).  
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documented in other studies, which range between 15 and 76 tons/ha 
(1.5 and 7.6 kg/m2) (Rahil and Qanadillo, 2015; Şimşek et al., 2005). 
Planting density has been shown to have a significant effect on cu
cumber yield (Ngouajio et al., 2006), which likely influenced our results. 

Similar to the yield results, there were no significant effect of treat
ment on the vegetable quality assessment parameters for the two Maine 
field studies (Table 6). For tomato, there was a significant treatment 
effect on the quality index for color, shape, defect, and firmness in the 
VT-19 study (Table 7). The timer treatment scored significantly better 
for the shape, defect, and firmness indices than the control treatment 
suggesting that the low soil moisture levels in the control affected the 
quality of the harvested tomatoes. The color index of the control to
matoes was significantly higher than those of the feel treatment 
tomatoes. 

These result show that the cucumber, pepper, and tomato crops used 
in this study showed resilience to a wide range of irrigation water 
applied and soil moisture levels found occurring during the growing 
season without any yield reductions, and for the most part, without 
many impacts on quality. This may be in part due to the field studies 
taking place in relatively high precipitation years during the growing 
season. The monthly precipitation values at the two sites in their 
respective years are shown along with the past 20-year average in Fig. 9. 
There was 28 % and 15 % greater precipitation in 2021 and 2022, 
respectively, in Maine as compared to the 20-year average. In Vermont, 
there was 8 % and 20 % greater precipitation than the average in 2019 
and 2021, respectively. The irrigation treatments may increase vege
table yields when precipitation is below average during the growing 
season. 

4. Conclusion 

A survey of Vermont and Massachusetts vegetable and small fruit 
growers in 2017, and four focus groups with farmers in 2019 and early 
2020 demonstrate that many growers are interested in refining their 
irrigation scheduling approach, but many do not have experience with 
the soil moisture sensing tools currently on the market. More commonly, 
vegetable and small fruit farmers in the Northeast used observable crop 
condition and the tactile dryness of soil to determine when to initiate 
and desist irrigation. Soil moisture sensor technology that measures 
plant available water is an approach that farmers are interested in, but 
they have varied preferences for how they wish to access soil moisture 
data (locally versus remotely) and how often they wish to use that data 
to make irrigation decisions. We present initial findings that farmer 
willingness to invest in soil moisture sensors and software increases as 
potential yield gain also increases, though this type of choice experiment 
should be conducted with a larger sample size in the future. 

Field experiments were conducted in Maine and Vermont, U.S.A. for 

two growing seasons to investigate how using the feel method, soil 
moisture sensors, and timers to schedule irrigation affects soil moisture 
levels, leaching, and crop yield and quality. The three scheduling 
methods were compared to a non-irrigated control treatment. Although 
there were no significant effects of irrigation scheduling method on yield 
of the vegetable crops, some results suggested advantages to the use of 
soil moisture sensors to schedule irrigation. The use of sensors increased 
the proportion of days during the growing season in the optimal field 
capacity category as compared to the other scheduling methods. The 
effects of soil-water consistency on crop development and yield is an 
understudied topic, and deserves further attention. Additionally, the 
field trials were conducted in years where above average precipitation 
was recorded at both study sites, and it is still possible that use of sensors 
could improve crop yields and quality in drier conditions. The use of 
sensors resulted in less irrigation applied compared to the feel method in 
three of the four field studies. Nitrate leaching in soils, especially sandy 
textured soils, is a concern with potential to contaminate groundwater 
sources and is a direct economic cost as N is lost for crop uptake. The 
depletion of extractable soil N occurred to the greatest extent for the 
timer method and the least extent with the sensor method suggesting 
that over-irrigation may lead to the loss of NO3

- -N from the rooting soil 
zone. Minimizing unnecessary water use is important giving increas
ingly variable water availability in the Northeast, and the potential for 
regulatory changes that may require farmers to monitor or limit their 
water use. Overall, the results from these field studies show that the use 
of soil moisture sensors to initiate irrigation will result in soils having 
optimal soil moisture levels on more days and reduce potential envi
ronmental risk associated with N contamination of groundwater 
sources. 
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Table 6 
Vegetable color, gloss, shape, defect, and firmness quality indices for the four irrigation cue treatments at the Maine study sites.  

Crop Treatment Maine 2021 Maine 2022 

Color Gloss Shape Defect Firmness Color Gloss Shape Defect Firmness 

Cucumber Feel of soil  2.9  1.7  2.4  3.0  4.2  1.9  1.8  1.5  2.1  4.8 
Cucumber Sensor  3.1  1.7  2.2  3.1  3.9  3.5  1.3  4.3  2.5  5.0 
Cucumber Timer  2.8  1.9  2.1  3.1  3.9  2.9  1.5  2.4  2.5  5.0 
Cucumber Control  2.7  2.1  2.1  2.9  4.3  2.3  1.5  3.0  3.1  5.0  

Prob > F  0.74  0.16  0.52  0.56  0.31  0.59  0.67  0.06  0.33  0.08 
Pepper Feel of soil  1.8  3.6  3.3  1.7  4.0  1.8  3.7  3.2  1.8  4.1 
Pepper Sensor  1.8  3.8  3.1  2.1  4.2  2.0  3.8  3.6  2.1  4.2 
Pepper Timer  1.7  3.5  2.8  1.6  4.1  2.0  3.6  3.2  1.5  4.3 
Pepper Control  1.8  3.6  3.1  1.9  4.2  2.0  3.7  3.3  1.7  4.0  

Prob > F  0.99  0.45  0.38  0.51  0.66  0.82  0.60  0.21  0.18  0.88 
Tomato Feel of soil  2.3  3.0  3.5  2.7  3.7  1.8  3.7  3.2  1.8  4.1 
Tomato Sensor  2.7  3.1  3.4  2.7  3.8  2.0  3.8  3.6  2.1  4.2 
Tomato Timer  2.8  3.0  3.7  2.7  3.8  2.0  3.6  3.2  1.5  4.3 
Tomato Control  2.9  3.1  3.5  2.8  3.8  2.0  3.7  3.3  1.7  4.0  

Prob > F  0.20  0.95  0.40  0.87  0.95  0.83  0.60  0.21  0.18  0.88  
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